
Construction of Software Model Graph and
Analysing Object-Oriented Program(C#) Using

Abstract Syntax Tree Method
Appala Srinuvasu Muttipati#1, Poosapati Padmaja*2

#Research Scholar, Department of Computer Science and Engineering, GITAM University
Visakhapatnam, India

*Associate Professor, Department of Information Technology, GITAM University
 Visakhapatnam, India

Abstract— Software maintenance is one of the key exercises in
any software engineering process in which source code
examination assumes a critical part. Because of the high cost
of maintenance, it has turnout to be very important to deliver
high-quality software. Over the long haul, various
investigations have been performed on source code to focus
intricacy. This paper proposes an approach for construction of
Software Model Graph and analyzing source code using
Abstract syntax tree. With the assistance of our approach,
source code analysis, can be recover the high-level structure of
a software framework directly from its source code them
produce a software model graph. Coupling, Common design
structures, Refractor design structures can be distinguished
regardless of the fact that their source code is altered. These
reproduced structures can be consolidated into a single library
entity, to be utilized productively in different parts of the
current project or in future projects. This approach will
likewise stay away from conflicting bug fixes..

Keywords— Source code Analysis, Abstract Syntax Tree,
Software Model Graph, Coupling

I. INTRODUCTION

In many software engineering disciplines, source code
analysis represents a fundamental and preliminary step
required to perform activities such as software
maintenance and program transformation. Programming
building design additionally assumes a key part in
refactoring procedures, which constitute the receptive part
of upkeep assignments. Refactoring enhances the inward
design structure of software by keeping the generation of
low-quality products. Recognizing these types of identical
non- standard design patterns and common design defects
could offer a momentous advantage in terms of reducing
the cost of maintenance; the reason is that the most
commonly-used structures in software design are the best
places to search for refactoring opportunities that they
influence various parts of the design. For example, non-
standard structures that are like to design patterns may be
modified to comply with standard forms, and common
design defects can be immediately distinguished, which
permits them to be fixed in multiple areas at once.
Likewise, frequent repeated indistinguishable design
structures are usually the most reusable parts of the
design; these parts can provide good candidates for
additional use in future design.

Another source of the clones is the reproduced code
because of copy past activities. Basically, developers
modify these repeated parts independently to permit their
source code to change, yet the design remains same [1, 2].
The code quality could diminish if developers apply a bug
fix to one structure yet neglect to apply the same
amendment to its duplicates.

A. Unified Modeling Language

Unified Modeling Language (UML) represents a
unification of the concepts and notations exhibited by the
three amigos Grady Booch, Jim Rumbaugh, and Ivar
Jacobson [3]. The objective is for UML to become a
common language for creating models of object oriented
programming. The two noteworthy parts of the UML: a
Meta-Model and a Notation. The meta-model is a
description of UML in UML. It clarifies the objects,
attributes, and relationships necessary to represent the
concepts of UML within a software application. The
UML notation is rich and full bodied. It is included two
noteworthy subdivisions. There is a notation for modeling
the static components of an outline, for example, classes,
attributes, and relationships. There is additionally a
notation for modeling the dynamic components of an
outline, for example, objects, messages, and finite state
machines. For example consider an object oriented
program (java, C#) analyze that source code and
transform into UML class diagram shown in Fig.1 based
on this construct a software model graph is shown in
section B.

B. Existing Software Model Graph

The purpose of a UML class diagram is to depict the
classes within a model. In an object oriented application,
classes have attributes (member variables), operations
(member functions) and relationships (association,
aggregation, inheritance, dependence and composite) with
other classes. The UML class diagram can depict all these
things quite easily. In most of the papers construction of
software model graph is based on class diagram, where
each class is represented as a vertices/ node and labeled C.
The relations between the classes are considered as edges.
Relationships {association, generalization, dependence,
aggregation and realization} which are assigned with a
unique prime number {2, 3, 5, 7, 11, and 13} and unique

Appala Srinuvasu Muttipati et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3288-3293

www.ijcsit.com 3288

numbers label as edge weight. For example X and Y have
the relations association and aggregation then edge weight
will be the 2*7=14. Figure 2 shows the construction of
Software model graph from the UML class diagram.

Fig. 1 UML class diagram of Observer pattern implementation

Fig. 2 UML based Software Model Graph for Observer pattern

C. Cohesion and Coupling

The term coupling is used to gauge the relative
interdependency between different classes as one class has
the connected with another class. While on the other hand
cohesion is defined as the strength of the attributes inside
the class which implies how the attributes are connected
inside the class. Coupling is constantly correlated with
cohesion in such a way as if coupling is high then cohesion
is low and vice versa [4]. One can say that a class is highly
coupled or many dependent with other classes, if there are
many associations and loosely coupled or some dependent
with other classes if there is a less associations. The
coupling is decided at the designing phase of the
framework, it depends on the interface complexity of the
classes. Therefore, the coupling is a degree at which a class
is associated with other classes in the system.

Let us now illustrate the cohesive class which can
perform a solitary undertaking inside of the software
procedure. It obliges little cooperation with different
procedures that are utilized as a part of different parts of a
program. Cohesion gives the strength to the bond between
attributes of a class and it is an idea through which catch the
intra-module with cohesion. Therefore, cohesion is used to
decide how closely or tightly bound the internal attributes

of a class to each other. Cohesion gives a proposal to the
designer about whether the different attributes of a class
have a place together in the same class. Thus, the coupling
and cohesion are associated with one other; hence the Fig. 3
demonstrates the general representation of coupling and
cohesion.

Fig. 3 a) General representation of cohesion and coupling b) software

model graph representation of cohesion and coupling

D. Paper Contributions

This paper proposes a software model graph, by use of
the Nfactory libraries (open source) to extract the
information at various levels in order to generate the
abstract syntax tree from object oriented language (C#). The
use of generating software model graph is to provide in-
depth information regarding the interactions between the
classes (vertices / nodes). The communication message of
the nodes are shown with the edge weight in model graph,
which helps developers in Refactoring, reused designs,
common design structures, circular dependency structures
and pattern design. All those factors can observe by
utilizing Software model graph

E. Paper Organization

The rest of the paper is organized as follows: section 2
presents the related work, section 3 discusses the proposed
approach used to generate the syntax or parse tree from the
C# source code and then build software model graph.
Section 4 talks about the implementation details of the
software model graph, section 5 discusses the outcome of
the project. Finally, section 6 draws the conclusion and the
future work.

II. RELATED WORK

Jeffrey L et al. [5] proposed a six grammar annotations -
omission, labeling, Boolean access, list formation, inlining,
and super class development that permit an abstract syntax
for a language to be characterized based on its concrete
syntax. An annotated grammar, generate both a parser and a
rewritable AST. Concretizing the AST permits it to protect
the designing of the original code even after rewriting.
Moreover, an AST generator based on our method can
couple the produced parser/AST-builder with a pseudo-
preprocessor to permit representation and control of pre-
processed code. In Ludwig, AST generator has been
implemented and has been used to generate the rewritable

Appala Srinuvasu Muttipati et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3288-3293

www.ijcsit.com 3289

AST in a refactoring; the annotated grammar was more than
a request of extent smaller than the generated code, and the
overhead of concretizing ASTs was very reasonable.

Andrew Yahin et al [6] proposed Clone detection using
abstract syntax trees. A functional system for recognizing
close-miss and sequence clones on scale has been
introduced. The methodology is taking into account
varieties of strategies for compiler common sub expression
elimination using hashing. The method is implemented
directly by standard parsing technology which identifies
clones in arbitrary language constructs, and computes
macros that permit evacuation of the clones without
influencing the operation of the program. The method is
applied to a genuine use of moderate scale, and affirmed
past appraisals of clone density of 7-15%, suggesting there
is a “manual” software engineering process “redundancy”
consistent. Automated methods can recognize and remove
such clones, lowering the value of this constant, at
concomitant savings in software engineering or
maintenance costs. Clone discovery tools additionally have
good potential for supporting domain analysis.

Pavitdeep singh et al [7] proposed a software quality tool
for measuring the different code metrics for C# source code
using Abstract syntax tree. Nfactory libraries are used to
generating abstract syntax tree of the source code.

Harjot Singhvirdi and Balraj Singh [8] proposed different
types of coupling i.e. static and dynamic coupling. These
metrics performed under the different environments and
calculate the mean and the standard. The value of standard
deviation is useful in judging the representativeness of the
mean and quality of software system.

III. PROPOSED APPROACH

The proposed approach consists of various steps from
C# source code to syntax tree creation. Once the syntax
parse is generated it is resolved to using the Type system to
generate the semantic tree, which is further utilized to
construct the Software model graph refer to Fig.4.

Fig. 4 Approach for constructing Software Model Graph

Algorithm: Constructing a software model graph
Input: C# Source Code
Output: Directed graph (Software Model Graph)
Step 1: Source code (object oriented code) as input
Step 2: Source code samples are passed into the language

parse as input.
Step 3: Parser analyses the base class of the syntax tree as

the AST (Abstract Syntax Tree)
Step 4: AST method is used to determine the semantics of

any node classes within the syntax tree.
Step 5: generating software model graph

a. Class  node / vertex
b. Relationship  edge
c. Labeling the node/vertices and placing the edge

weights to edges.

Step 6: The output is Directed graph of Software model
graph

A. C# Source Code

 The proposed system at first takes a single file as input
and afterward peruses all the tasks inside of that single file
(Solution file) and afterwards parses the task files to
discover all the source files inside of the activities. During
Amid traversal of different files present it will likewise shift
through the files which are checked for prohibition during
parsing. When all the obliged files are read by the system
they are passed to the language parser for syntax tree
creation. Fig.5 shows the sample source code example.

Fig.5 Source Code Example

B. Language parser

1) Syntax Tree: C# source code is just a string.
Parsing the string into a syntax tree informs that it is an
invocation expression, which has a member reference as
target. The syntax tree is shown in Fig.6. A syntax tree
doesn’t give the complete information regarding object.
Some object most in all likelihood is a case technique, and
some object seems to be a local variable, parameter or a
field of the current class. It might be that some object could
be a class name.

Fig. 6 Syntax tree example

Appala Srinuvasu Muttipati et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3288-3293

www.ijcsit.com 3290

2) Semantic Tree: The semantic tree gives the
information with respect to these attributes. The semantic
tree constructed from the above syntax tree shown in Fig.7.

Fig .7 Semantic tree example

C. Software Model Graph

The constructed software model graph represents the
high - level view of software architecture as a simple
directed and labeled graph (G). The vertices of this graph
are classes, abstract classes, and interface classes. The edge
of the graph represents directed relations between these
entities (node/ vertices).

Graph: Let G = (N, E, Ln, Le, n, e) be a directed
software model graph, where N is a set of vertices, E⊆N×N
is a set of edges, Ln is a set of labels for the vertices, Le is a
set of labels for the edges, n: N→Ln is a function that
assigns a label to the vertices, e: E→Le is a function that
assigns a label to the edges.
Relation types in the software model graph are based on
UML-like [27] relations. At this point, especially consider
class and sequence diagrams of the UML. Moreover, to
handle some important relations that is visually hidden in
the UML diagrams. For example, if a method of a class has
the same signature with a method of the parent class, then
there is an “override” relation between these classes that is
Number of visually observable in UML class diagrams. We
also include some important high-level relations from UML
sequence diagrams, such as the “create” and “method call”
relations between entities. Possible entity types, relation
types and their labels are given in Table 1.

TABLE I LABELS OF NODES AND EDGES IN SMG

The nature of the object oriented design is that, there
can be more than one relation between the vertices (classes
and interfaces). To build a simple and understandable
graph, we collect all of the labels of parallel edges between
two vertices into a solitary set of labels, such that ‘Lij’ is a
set of labels of directed edge ‘eij’ that contains all relation
labels from vertex ‘vi’ to vertex ‘vj’. For example, if two
entities have both method call {M} and method parameter
{P} relations in the same direction, then the combined label
set for this edge becomes {M}∪{P} = {M,P}. In our
approach for detecting identical design-level clones, the
edges are compared during their set of the labels in such a
way that, when comparing two non- empty edge label sets,
‘Lu’ and ‘Ln’ are considered to be equal if and only if ‘Lu’ ⊆
‘Ln’ and ‘Ln’ ⊆ ‘Lu’. Fig. 1 demonstrates the UML class
diagram of an observer design pattern example, and Fig.8
represents the related software graph model that we
constructed. Fig.8 shows that the software model graph
includes additional information compared to the UML class
diagram, such as the “type field” (A) , “method call” (M),
“override” (O), “methods parameter” (P), and “extend” (X)
relations.

Fig. 8 Software model graph of example observer pattern

D. Degree of Coupling

The degree of coupling [9] is calculated as the ratio of
number of message received to the number of message
sending. The degree of coupling is given in equation 1.
Where DC is degree of coupling, MRC is message received
coupling and MSC is message sender coupling. The MRC
measures the complexity of the message received by the
classes, as MRC is the number of messages received by a
class from the other classes. The MSC is the number of
message sender coupling among the objects of the classes;
it is low level coupling that is achieved through the
communication between the components.

Degree of Coupling (DC) =
୑ୖେ

୑ୗେ
 (1)

Node Label Node Type
C Class
I Interface
A Abstract class
Edge Label Relation Type (Edges are directed from A to B)
X source class extends target class
I source class implements target class
A source class has field type of target class
T source class uses target class in generic type

declaration
L source class method has a local parameter of

target class
P source class uses target class in its methods

parameter
R source class has methods has been return type of

target class
M source class has method call to target class
F source class access field of target class
C source class creates target class
O source class overrides methods of Class B

Appala Srinuvasu Muttipati et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3288-3293

www.ijcsit.com 3291

IV. RESULTS AND DISCUSSION

The results are analysed from sample source code. The
outcome of software model graph is shown in Fig.9 which
consists of 7 classes, one abstract class, one interface class
and five normal classes. The directed edge weight is
referred as communication message between the various
classes (nodes/ vertices) as described in Table I. Fig.10
show common design structures that are identified
manually from Fig. 9(C). Fig.11a) gives information about
BinObserver class. Here BinObserver class is
communicating to subject class with two different message,
one is method (M) other is parameter (P) and to observer
class with Extend (X). It performed coupling is MSC.
Similarly rest of the classes shown in Fig. 11 (b) (c) (d) (e).
In Fig. 11(d) communication of MSC there is multiple
labels (AMP) on edge which refers three different
communications are performing. Table II describes about
the total numbers of MSC and MRC of various classes and
their degree of coupling.

Fig. 9(A) Selection of C# source file (B) Abstract Syntax tree, Semantic

(C) Software model graph

Fig. 10 Common design structures

Fig. 11 Degree of Coupling

TABLE III

COUPLING METRICS

Class
Object Oriented

MSC MRC DC
BinObserver 3 0 0/3
OctObserver 3 0 0/3
HexObserver 3 0 0/3
Observer 3 4 4/3= 1.3
Subject 3 4 4/3= 1.3

V. CONCLUSION AND FUTURE WORK

In this paper an approach is proposed to generate a
software model graph and to analyse the source code using
abstract syntax tree method. In suggested approach, the
solution file for the C# application is taken as an input to
the system. It loads the file into memory and reads one by
one to load all the source code in order to construct the
syntax tree. Once the creation of abstract syntax tree is
completed, it is ready for analysis. The Nfactor library [10]
is utilized to generate syntax tree. Generated syntax tree is
used for finding refactoring of similar source code and for
finding a patterns design. The construction of software
model graph provides in-depth information about a system.
Based on SMG, common design structures, coupling and
substructures can be found in result section. These
structured graphs can help develop in understanding the
architecture of the object oriented system.

Appala Srinuvasu Muttipati et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3288-3293

www.ijcsit.com 3292

The future enhancement for this work is to apply graph
partitioning technique on software model graph to identify
specific-domain structures, commonly used design
structures; copy-past activity and design patterns of object
oriented systems. These structures can assist for software
developers to improve the quality and design of the
software.

REFERENCES
[1] Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: Finding copy–paste

and related bugs in large scale software code," IEEE Trans. Softw.
Eng, vol. 32, pp. 172-192, 2006.

[2] P. Gandhi and P. K. Bhatia, “Optimization of Object- Oriented
Design Using Coupling Metrics,” International Journal of Computer
Applications, Vol. 27(10), 2011, pp. 41-44.

[3] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified
Modeling Language User Guide, Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1999.

[4] Vipin Saxena and Santosh Kumar, "Impact of Coupling and
Cohesion in Object-Oriented Technology," Journal of Software
Engineering and Applications, vol. 5, pp. 671-676, 2012.

[5] Jeffrey L. Overbey and Ralph E. Johnson, “Generating Rewritable
Abstract Syntax Trees,” Software Language Engineering, Lecture
Notes in Computer Scienc. Springer- Verlag Berlin Heidelberg, vol.
5452, pp 114-133, 2009.

[6] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant'Anna,
and Lorraine Bier, "Clone Detection Using Abstract Syntax Trees,"
in Proceedings of the International Conference on Software
Maintenance, 1998, IEEE Computer Society, Washington, DC, USA
, p. 368.

[7] Pavitdeep Singh, Satwinder Singh, and Jatinder Kaur, "Tool for
generating code metrics for C# source code using abstract syntax tree
technique." SIGSOFT Softw. Eng. Notes 38, vol. 5, p.1-6, August
2013. DOI=10.1145/2507288.2507312
http://doi.acm.org/10.1145/2507288.2507312

[8] Harjot Singh Virdi and Balraj Singh, "Study of the Different Types
of Coupling Present in the Software Code," International Journal of
computer Science and Information Technology, vol. 3(3), pp. 4153-
4156, 2012.

[9] Jehad Al Dallal, "Identifying refactoring opportunities in object-
oriented code: A systematic literature review," Information and
software Technology, vol. 58, pp 231-249, 2015.

[10] Daniel Grunwald, Using NRefactory for analyzing C# code
(http://www.codeproject.com/Articles/408663/Using-NRefactory-
for-analyzing-Csharp-code)

Appala Srinuvasu Muttipati et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3288-3293

www.ijcsit.com 3293

